References

93

19 Mulla, S.I., Bharagava, R.N., and Belhaj, D. (2019). An overview of nitro

group-containing compounds and herbicides degradation in microorganisms.

In: Microbial Metabolism of Xenobiotic Compounds (ed. P.K. Arora), 319–335.

Springer International https://doi.org/10.1007/978-981-13-7462-3_16.

20 Bharagava, R.N., Saxena, G., and Mulla, S.I. (2020). Introduction to indus-

trial wastes containing organic and inorganic pollutants and bioremediation

approaches for environmental management. In: Bioremediation of Industrial

Wastes for Environmental Safety (eds. G. Saxena and R. Bharagava), 1–18. Singa-

pore: Springer https://doi.org/10.1007/978-981-13-1891-7_1.

21 Yang, L. (2020). Toxicity of mercury: molecular evidence. Chemosphere 245:

125586. https://doi.org/10.1016/j.chemosphere.2019.125586.

22 Mulla, S.I., Hu, A., and Sun, Q. (2018). Biodegradation of sulfamethoxazole in

bacteria from three different origins. Journal of Environmental Management 206:

93–102.

23 Rodríguez-Estival, J. (2019). Food safety risk assessment of metal pollution in

crayfish from two historical mining areas: accounting for bioavailability and

cooking extractability. Ecotoxicology and Environmental Safety 185: 109682.

https://doi.org/10.1016/j.ecoenv.2019.109682.

24 Almeida, S. (2018). Bisphenol A: food exposure and impact on human health:

bisphenol A and human health effect. Comprehensive Reviews in Food Science

and Food Safety 17 (6): 1503–1517. https://doi.org/10.1111/1541-4337.12388.

25 Bernardino, J. (2012). Biodegradation and bioremediation of organic pesticides

(Page 6, Section 6.4). In: Pesticides – Recent Trends in Pesticide Residue Assay (ed.

R.P. Soundararajan). InTech https://doi.org/10.5772/48631.

26 Anjum, R., Rahman, M., Masood, F., and Malik, A. (2011). Bioremediation

of pesticides from soil and wastewater Page 3, Section 6.1- Introduction. In:

Environmental Protection Strategies for Sustainable Development, Strategies for

Sustainability (eds. A. Malik and E. Grohmann). Dordrecht: Springer https://doi

.org/10.1007/978-94-007-1591-2_9.

27 Pinto, A.P., Lopes, M.E., Dordio, A., and Castanheiro, J.E.F. (2020). Bioaugmen-

tation an effective strategy to improve the performance of biobeds: a review.

In: Agrochemicals Detection, Treatment and Remediation (ed. M.N.V. Prasad),

207–240. Butterworth-Heinemann https://doi.org/10.1016/B978-0-08-103017-2

.00009-X.

28 Das, M. and Adholeya, A. (2012). Role of microorganisms in remediation of

contaminated soil. In: Microorganisms in Environmental Management (eds. A.

Prakash, T. Satyanarayana and B.N. Johri), 81–111. Dordrecht, Netherlands:

Springer https://doi.org/10.1007/978-94-007-2229-3_4.

29 Azubuike, C.C., Chikere, C.B., and Okpokwasili, G.C. (2016). Bioremediation

techniques – classification based on site of application: principles, advantages,

limitations and prospects. World Journal of Microbiology and Biotechnology 32

(11): 180. https://doi.org/10.1007/s11274-016-2137-x.

30 Kao, C.M. (2008). Application of in situ biosparging to remediate a

petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere

70 (8): 1492–1499. https://doi.org/10.1016/j.chemosphere.2007.08.029.